

10th ICSE Mock Test 1

Subject : Chemistry Topic: Periodic table, Chemical bonding and Acids, bases & salts Time allowed: 50 Minutes (inclusive of reading time) **M.M.: 40** ALL QUESTIONS ARE COMPULSORY. Which one of the following does not increase while moving down the group of 1. the periodic table? (1) Atomic radius (2) Metallic character (3) Valency (4) Number of shells in an element. On moving from left to right in a period in the periodic table, the size of the atom 2. (1) increases (2) decreases (3) does not change appreciably (4) first decreases and then increases. 3. An atom of an element has the electronic configuration 2, 8, 2. To which group does it belong? (1) 4th group (2) 6th group (3) 3rd group (4) 2nd group 4. In modern periodic table, elements are arranged according to their (1) atomic weight (2) density (3) atomic number (4) melting point 5. In which group are inert elements placed? (3) Group 1 (1) Group 8 (2) Group 10 (4) Group 18 6. Which of the following sets of atomic number belong to that of alkali metals? (2) 37, 19, 3, 55 (3) 9, 17, 35, 53 (1) 1, 12, 30, 4, 62 (4) 12, 20, 56, 88 7. When an atom of iodine becomes an iodide ion (I-) the radius will (3) remain the same (4) none (1) decrease (2) increase 8. The amount of energy released when one or more electrons is added to the neutral atom is (1) electron affinity (2) ionisation energy (3) electron negativity (4) atomicity

9.		f element A contains 6 electrons. If A con pound is		
	(1) AB ₂	(2) A_2B	(3) A_2B_3	(4) A_3B_2
10.	character. Li, O, C, Be, F	ring elements in the o		0
	(1) F < O < C < Be (3) F < O < C < Be		(2) Li < Be < C < O (4) F < O < Be < C	<f <li< td=""></li<></f
11.	What type of ovide	would Eka alumini		
11.	(1) EO_3	e would Eka-alumini (2) E ₃ O ₂	(3) E_2O_3	(4) EO
12.	Which of these belo Elements Atomic number	ong to the same perio 1 (2) C 2. 10. 5	od?	
	(1) A, B	(2) B, C	(3) C, A	(4) A, B & C
13.	Which of the follow (1) Mass number (3) Atomic number	ving property will be	e common in group (2) (2) Number of prot (4) Number of vale	tons in nucleus
14.		onic configuration 2		nic configuration 2, 8, ments will exhibit
	(1) A and C	(2) A and B	(3) B and C	(4) None of these
15.		ving element would (2) Na	lose an electron easi (3) K	ly? (4) Ca
16.		rs of the elements Na lement have the larg (2) Na		11, 12, 19 and 20 (4) Ca
17.	An element comme (1) Chlorine	on to all acid is (2) Nitrogen	(3) Oxygen	(4) Hydrogen
18.	Dissolution of acid (1) Exothermic	or base in water is (2) Endothermic	(3) Violent	(4) None of these
19.	If water contains m (1) Neutral (3) Acidic	nore H+ ions than OI	H- ions, then water is (2) Basic (4) none of the abo	

20.		per unit volume. (2) Decreases (4) Depends on type of acid used
21.		(2) Hydrochloric acid(4) Both (1) and (3)
22.	Which one of the following doesn't contain1)Blue vitriol2)Baking soda3	in water of crystallization 3)gypsum 4)Washing soda
23.	The number of lone pair of electrons in th (1) One (2) Two	e nitrogen atom in ammonia molecule: (3) Three (4) Four
24.	Ionic bonding is seen in: 1 Methane (2) Hydrogen ((3) Ammonia (4) Sodium oxide
25.		shell: (2)energy is absorbed (4)none of the above
26.	The most electronegative element is: 1) Sodium (2)Aluminium ((3)Bromine (4)Fluorine
27.		(2)Double Covalent Bond (4) Triple Covalent Bond
28.	The type of bonding present in the nitroge 1) Single Covalent Bond ((3) Polar Covalent bond (
29.	During ionisation, metals lose electrons th 1) Oxidation (2) Reduction (nis change can be called: (3) Redox (4) Displacement
30.	The oxide of a metal that reacts both with 1) Sodium oxide ((3) Aluminium oxide	acid and alkali to form salt and water: (2) Magnesium oxide (4) Ferrous oxide
31.	, , ,	lle of water combines with: (2) Proton (4) Oxygen atom
32.	H ₂ Y is the formula of a compound What i (1) 1 (2) 2 (3) 3 (is the valency exhibited by Y? (4) none of the above

- 33.The particles which attract one another to form electrovalent compounds are:
(1) Electrons(2) Protons(3) Ions(4) Molecules
- 34. A chemical reaction does not involve:
 - 1) Formation of new substances having entirely different properties than that of the reactants
 - (2) Breaking of old chemical bonds and formation of new chemical bonds
 - (3) Rearrangement of the atoms of reactants to form new products
 - (4) Changing of the atoms of on element into those of another element to form new products
- 35. Which of the following phenomena occur, when a small amount of acid is added to water?
 i. Ionisation ii. Neutralisation iii. Dilution iv. Salt formation

 (1) (i) and (ii)
 (2) (i) and (iii)
 (3) (ii) and (iii)
 (4) (ii) and (iv)
- 36. A gas is evolved when Dil. Sulphuric Acid reacts with Zinc granules. It gives a pop sound when lit match stick is introduced near it. Identify the gas?
 (1) Nitrogen (2) Hydrogen (3) Oxygen (4) Carbon dioxide
- 37. pH is quite useful to us in a number of ways in daily life. Some of its applications are:

Control of pH of the soil : Plants need a specific pH range for proper growth. The soil may be acidic, basic or neutral depending upon the relative concentration of H* and OH-. The pH of any soil can be determined by using pH paper. If the soil is too acidic, it can be corrected by adding lime to it. If the soil is too basic, it can be corrected by adding organic manure which contains acidic materials.

Regaining shine of a tarnished copper vessel by use of acids : A copper vessel gets tarnished due to formation of an oxide layer on its surface. On rubbing lenion on the vessel, the surface is cleaned and the vessel begins to shine again. This is due to the fact that copper oxide is basic in nature, which reacts with the acid (citric acid) present in lemon to form a salt (copper citrate) which is washed away with water. As a result, the layer of copper oxide is removed from the surface of the vessel and the shining surface is expose(4)

Self-defence by animals through chemical warfare : Stings of bees and ants contain methanoic aci(4) When stung, it causes lot of pain and irritation. This can be cured by rubbing the affected area with mild base like baking sod1

(i) When black copper oxide placed in a beaker is treated with dilute HCl, its colour changes to

(1) white (2) dark red (3) bluish green (4) no change.

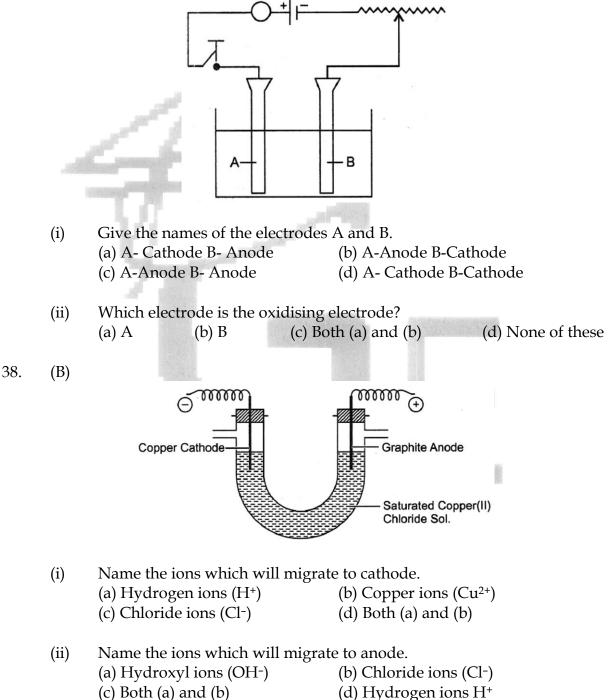
- (ii) P is an aqueous solution of acid and Q is an aqueous solution of base. When these two are diluted separately, then
 (1) pH of P increases while that of Q decreases till neutralisation.
 (2) pH of P decreases while that of Q increases till neutralisation.
 (3) pH of both P and Q decrease.
 (4) pH of both P and Q increase.
- (iii) Which of the following acids is present in bee sting?
 (1) Formic acid
 (2) Acetic acid
 (3) Citric acid
 (4) Hydrochloric acid
- (iv) Sting of ant can be cured by rubbing the affected area with soap because
 - (1) it contains oxalic acid which neutralises the effect of formic acid
 - (2) it contains aluminium hydroxide which neutralises the effect of formic acid
 - (3) it contains sodium hydroxide which neutralises the effect of formic acid
 - (4) none of these.

	<u>Class-10th ICSE</u> ect -Chemistry duration-50 Minutes	<u>Mock Test 2</u>	M.Marks-40
Fill ir 1.	n the Blanks Salts of normal elements [1 (IA) to 17 (V (a) colourless (b) green		(d) blue
2.	Ferrous salts are in colour. (a) colourless (b) light green	(c) white	(d) blue
3.	An example of weak alkali solution is . (a) Sodium hydroxide (c) Ammonium hydroxide	(b) Nitrogen dioxic (d) Potassium hydi	
4.	Both ammonium and sodium hydroxid identifying of salts. (a) Cations (c) Electrons	le are used in analyti (b) Anions (d) Both (a) and (b)	
5.	Zinc chloride solution reacts with amm coloured precipitate. (a) blue (b) green	onium hydroxide so (c) yellow	lution to give a (d) white
6.	Calcium salts with sodium hydroxide g (a) pink (b) blue	give precipita (c) white	ites. (d) green
7.	Salts of which elements are generally co (a) Transition (c) Lanthanides	oloured : (b) Normal (d) Inner-transitior	L
8.	Which one of the following salt solution hydroxide solution gives a deep blue so (a) $FeCl_3(aq)$ (b) $CuSO_4(aq)$	olution ?	
9.	Which one of the following salt solution hydroxide solution gives a clear solution (a) $Pb(NO_3)_2(aq)$ (b) $CuSO_4(aq)$	on finally ?	xcess sodium (d) ZnSO4(aq)
10.	The precipitate of which of the followir ammonia solution ? (a) Iron(II) chloride (c) Copper(II) sulphate	ng compounds is solu (b) Magnesium chl (d) Lead nitrate	

11.	Which one of the following salt solution hydroxide solution results finally in di (a) AlCl ₃ (aq) (b) FeSO ₄ (aq)	ssolution of the preci	
12.	Hydroxide of this metal is soluble in so (a) Magnesium (b) Lead	odium hydroxide sol (c) Silver	ution: (d) Copper
13.	If two compounds have the same empt formula, they must have (a) Different percentage composition. (c) Same viscosity.	irical formula but di (b) Different molec (d) Same vapour d	cular weights.
14.	When two compounds R and S have sa compounds R and S are: (a) identical (c) either identical or isomer	ame percentage comp (b) isomer (d) All are correct	position. Then the
15.	What indicates the actual number of co (a) Empirical formula (c) Empirical mass	onstituent atoms in a (b) Molecular form (d) Molecular mas	nula
16.	If two compounds have the same empty formulae, they must have (a) different percentage composition. (c) same viscosity.	irical formula but dif (b) different molec (d) same vapour d	ular mass.
17.	The starting material which takes part (a) product (b) reactant	in chemical reaction (c) catalyst	is called: (d) starter
18.	The formula which gives the simple ra molecule of a compound is called (a) Molecular Formula (c) Structural Formula	tio of each kind of at (b) Empirical Form (d) None of these	-
19.	What is the percentage mass of copper (a) 25.45% (b) 36.07%	in Blue Vitriol crysta (c) 49.56%	al? (d) None of these
20.	Percentage of oxygen [O] in sulphur d (a) 2.5 (b) 50	ioxide [SO ₂] : (c) 60	(d) 40
21.	Electrolysis is the passage of change accompanied by a change (a) chemical, electricity (c) electrons, chemical	o 1	nical

22.	An electrically cha (a) a proton	rged atom is called (b) an ion	(c) an electron	(d) a cyclotron
23.	An electrolyte is a (a) metal (d) liquid that conc	(b) sugar	(c) cell	
24.	A weak electrolyte (a) dissociates com (c) ionises complet	1 V	(b) is feebly ionised	l in the solution electrical conductivity
25.	(a) is completely ic	e is one which nised in the solution ectrical conductivity	(b) dissociates part	-
26.	Pure water consist (a) ions	s almost entirely of (b) atoms (c) ion		(d) molecules
27.	In the electrolysis ofions at the (a) OH-	of acidulated water, on the anode. (b) SO_4^{2-}	oxygen is produced b (c) Both(a)and(b)	by the discharge (d) None of these
28.	Ionisation is a (a) irreversible		(c) Both (a) and (b)	(d) None of these
29.	The gas given off a (a) Nitrogen	t cathode during the (b) Hydrogen	electrolysis of acidu (c) Oxygen	lated water is (d) None of these
30.		trodes, hydrogen is electrolysis of acidifi		and oxygen at the le
31.	The negative electr (a) anode	ode in electrolysis is (b) cathode	called the	(d) None of these
32.		during el (b) anode	ectrolysis. (c) cathode	(d) None of these
33.	In a solution or mo ions. (a) non	lten state, a	electrolyte consi (c) weak	sts almost entirely of (d) None of these
34.	What is the produc		ode in the electrolysi	s of aqueous CuSO ₄ ?

35. An electrolyte which completely dissociates into ions is:


- (a) Alcohol
- (c) Sucrose

- (b) Carbonic acid
- (d) Sodium hydroxide
- 36. The electrolysis of acidified water is example of:

(a) Reduction (b) Oxidation (c) Redox reaction (d) Synthesis

Figure Based Questions

Study the given figure and answer the question that follow: 37. (A)

Class-10th ICSE Mock Test 3

Subject –Chemistry Time duration-50 Minutes

M.Marks-40

- The metallic character..... in a group as one moves from top to bottom.
 (a) increases
 (b) decreases
 (c) remains same
 (d) one of the above
- The electronegativity of elements across the period and down the group.
 (a) increases, increases
 (b) decreases; increases
 - (c) increases; decreases (d) decreases, decreases
- - (c) valency (d) electron affinity
- 4. Ionisation Potential increases over a period from left to right because the :
 - (a) Atomic radius increases and nuclear charge increase
 - (b) Atomic radius and nuclear charge decrease
 - (c) Atomic radius increases and nuclear charge decreases
 - (d) Atomic radius decreases and nuclear charge increase
- 5. Which of the following pairs have both the members from the same group of periodic table?(a) Mg, Be(b) Mg, Na(c) Mg, Cu(d) Mg, Cl
- 6. Which of the following types of elements show variable valenry?(a) Transition elements(b) s-block elements
 - (c) p-block elements (d) d-block elements
- 7. Which is larger Na⁺ or K⁺? Why?
 (a) K⁺ is larger than Na⁺ because of the larger ionic radius
 (b) Na⁺ is larger than K⁺ because of the larger ionic radius
 (c) K⁺ is larger than Na⁺ because K⁺ belongs to period 4
 (d) Both are of same size

8. The electronegativities (according to pauling) of the elements in period 3 of the portion of Periodic Table are as follows when the elements arranged in alphabetical order :

Al	Cl	Mg	Na	Р	S	Si
1.5	3.0	1.2	0.9	2.1	2.5	1.8

Arrange the elements in the order in which they occur in the Periodic Table from left to right. (The group 1 element first, followed by the group 2 element and so o& up to group T)

(a) Na, Mg, Al, Si, P, S, Cl.	(b) Mg, Na, Al, Si, Cl, P, S
(c) Na, Al, Mg, P, Si, Cl, S	(d) Mg, Al, Cl, P, S, Si, Na

- 10. Ionic compounds have melting points due to ionic bonds (a) high, weak (b) low, strong (c) high strong (d) low, weak
- 11. In NH⁺₄ all the four bonds are......
 (a) covalent
 (b) not identical
 (c) identical
 (d) coordinate
- 12. Due to the presence of strong electrostatic forces of attraction between ions, ionic compounds.
 - (a) Have high melting and boiling points
 - (b) Conduct electricity in solid state
 - (c) Dissolve in kerosene
 - (d) All of the above
- 13. A polar covalent bond will be formed in which one of these pair of atoms (a) HF (b) H_2 (c) Cl_2 (d) O_2

14. Write Lewis dot symbols for atoms of the following elements: Mg and Na.

(a) Mg, Na	(b) Mg, Na	(c) Mg, Na	(d) Mg, Na
------------	------------	------------	------------

- 15. Molecular reactions which are generally slow reactions are shown by :
 - (a) Covalent compounds
 - (b) Ionic compounds
 - (c) Coordinate compounds
 - (d) Both ionic and covalent compounds
- 16.
 The basicity of acetic acid is

 (a) 1
 (b) 2
 (c) 3
 (d) 4

- 17. As the pH of solution decreases, its acidic strength progressively (c) Does not change (a) Increases (b) Decreases (d) Depends on the quantity of solution
- 18. pH of acetic acid is greater than dilute sulphuric acid. So acetic acid contains concentration of H⁺ ions (a) Same (b) Lower (c) Greater (d) cannot say
- 19. In terms of acidic strength, which one of the following is in the correct increasing order?
 - (a) Water < Acetic acid < Hydrochloric acid
 - (b) Water < Hydrochloric acid < Acetic acid
 - (c) Acetic acid < Water < Hydrochloric acid
 - (d) Hydrochloric acid < Water < Acetic acid
- 20. Methyl orange is:
 - (a) Pink in acidic medium, yellow in basic medium
 - (b) Yellow in acidic medium, pink in basic medium
 - (c) Colourless in acidic medium, pink in basic medium
 - (d) Pink in acidic medium, colourless in basic medium
- You are supplied with five solutions : A, B, C, D and E with pH values as 21. follows:

A = 1.8, B = 7, C = 8.5, D = 13 and E = 5

(a) A is neutral (b) A is strong base (c) A is strong acid (d) cannot say

- 22. Which one of the following will not produce an acid when made to react with water?
 - (a) Carbon monoxide (b) Carbon dioxide (d) Sulphur trioxide
 - (c) Nitrogen dioxide
- 23. Ammonium hydroxide is a weak alkali which dissociates partially to furnish (a) Sufficient, Soluble (b) Insufficient Insoluble
 - (c) Sufficient, Insoluble (d) Insufficient, Soluble
- 24. Hydroxide of this metal is soluble in NaOH. (a) Magnesium (b) Lead (c) Silver (d) Copper

25. Match the columns:

Column A	Column B
(1) Copper(II) nitrate	(A) Green
(2) Iron(II) sulphate	(B) White
(3) Magnesium chloride	(C) Pink
(4) Cobalt chloride	(D) Blue

(a) 1-C, 2-B, 3-A, 4-D	(b) 1-D, 2-B, 3-A, 4-C
(c) 1-D, 2-A, 3-B, 4-C	(d) 1-D, 2-4, 3-C, 4-B

26. Match the columns:

Column A	Column B
(1) Pb(NO ₃) ₂ from PbO	(A) Simple
(2) MgCl ₂ from Mg	(B) Displacement
(3) FeCl ₃ from Fe	(C) Titration
(4) NaNO ₃ from NaOH	(D) Neutralization

(a) 1-C, 2-B, 3-A, 4-D	(b) 1-B, 2-C, 3-D, 4-A
(c) 1-D, 2-A, 3-B, 4-C	(d) 1-D, 2-A, 3-C, 4-B

Choose the correct balanced chemical equations to show the reactions of the following : 27 Aluminium and caustic potash solution

27.	(a) 2Al + 2KOH + 2 (b) 2Al + 2KOH + 2 (c) 2Al + 2KOH + 2	$\begin{array}{l} \text{ustic potash solution} \\ 2H_2O \longrightarrow 2KAl + 22H_2O \longrightarrow 2KAlO_2 \\ 2H_2O \longrightarrow KAlO_2 + 22H_2O \longrightarrow 2KAlO_2 + 22H_2O \longrightarrow 2KAlO + 22KAlO +$	3H ₂ O + 3H ₂ - 3H ₂	
28.	(a) Molecular weig (b) Molecular weig	vapour density and r ht = 2/ vapour dens ht = 2 × vapour den ht × 2 = vapour den	sity sity	
29.	The vapour densit (a) 12	y of carbon dioxide (b) 16	C = 12, O = 16] is : (c) 44	(d) 22
30.	· ·	e of chlorine in calci f calcium is 40, chlor (b) 36.04%		(d) 50%
31.	In Na ₂ CO ₃ , percen (a) 62.93	tage mass of oxygen (b) 45.3	is: (c) 59.6	(d) 40.3
32.	-	mula of a compound ula will be (C = 12, H (b) C_2H_2	$ \begin{array}{l} \text{I is CH and its vapor} \\ \text{I = 1)} \\ \text{(c) } C_4 + H_4 \end{array} \end{array} $	density is 13. (d) C ₃ H ₃
33.	An organic compo	und contains carbon	hydrogen and oxyg	en. Its element

33. An organic compound contains carbon hydrogen and oxygen. Its elemental analysis gave C, 38.71% and H, 9.67%. The empirical formula of the compound would be:

	(a) CHO	(b) CH ₄ O	(c) CH ₃ O	(d) CH ₂ O
34.		in the electrochemical s et at the o	0	tions, the tendency of
	(a) oxidised	(b) reduced	(c) increased	(d) None of these
35.	Identify the wea	k electrolyte from the	following :	
	(a) Sodium chlo		(b) Dilute hydroc	
	(c) Dilute sulph	uric acid	(d) Aqueous acet	ic acid
36.	During the elect place :	rolysis of molten lead	bromide which of tl	he following takes
	(a) Bromine is re	eleased at the cathode	(b) Lead is depos	ited at the anode
	(c) Bromine ions	s gain electrons	(d) Lead is depos	ited at the cathode
37.	The cathode pro	duction of the electrol	ysis of zinc iodide is	5:
	(a) Iodine	(b) Zinc	(c) Zinc oxide	(d) Chloride
38.	; the che	mical change that occu	ars at this electrode	is called
	(a) anode, oxida	tion	(b) anode, reduct	ion
	(c) cathode, oxic	lation	(d) cathode, redu	ction
39.	Which of these	will act as a non-electro	olyte?	
	(a) Liquid carbo	n tetrachloride		
	(b) Acetic acid		and the second	
		coxide aqueous solutio		
	(a) Potassium cl	nloride aqueous solutio	JII	
40.		t best explains the gen ions in the electrolyte.		energy in a simple cell?
	(<i>i</i>)	electrons in the electro		

- (c) Transfer of electrons from a more reactive metal to a less reactive metal.
- (d) Transfer of electrons from a less reactive metal to a more reactive metal.

ANSWER KEYS

MOCK TEST 1

1. C	2. B	3. D	4. C	5. D	6. B	7. B	8. A	9. C	10. A
11. C	12. D	13. D	14. A	15. C	16. C	17. D	18. A	19. C	20. B
21. B	22. B	23. A	24. D	25. A	26. D	27. A	28. D	29. A	30. C
31. B	32. B	33. C	34. D	35. B	36. B	37. i-A, ii-A, iii-A, iv-C			

MOCK TEST 2

1. A	2. B	3. C	4. A	5. D	6. C	7. A	8. B	9. A	10. C
11. D	12. B	13. B	14. D	15. B	16. B	17. B	18. B	19. B	20. B
21. B	22. B	23. D	24. B	25. A	26. D	27. A	28. B	29. B	30. A
31. B	32. C	33. B	34. A	35. D	36. C	37. (A) i	-B, ii-A	38. (B) i	-D, ii-C

MOCK TEST 3

1. A	2. C	3. A	4. D	5. A	6. A	7. C	8. A	9. B	10. C
11. C	12. A	13. A	14. B	15. A	16. A	17. A	18. B	19. A	20. A
21. C	22. A	23. D	24. B	25. C	26. C	27. A	28. B	29. D	30. A
31. B	32. B	33. C	34. B	35. D	36. D	37. B	38. D	39. A	40. C