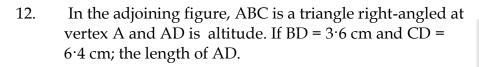


"There is no element of genius,

Without some form of madness"

<u>10th ICSE Mathematics Mock Test</u> <u>Topic: Co-ordinate Geometry, Triangles, Circle, Quardatic Equation, Ratio &</u> Proportion, Similarity, Linear Inequation, Probability, Matrics & A.P

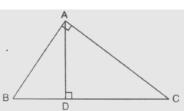

Time Allowed: 2.5 hrs

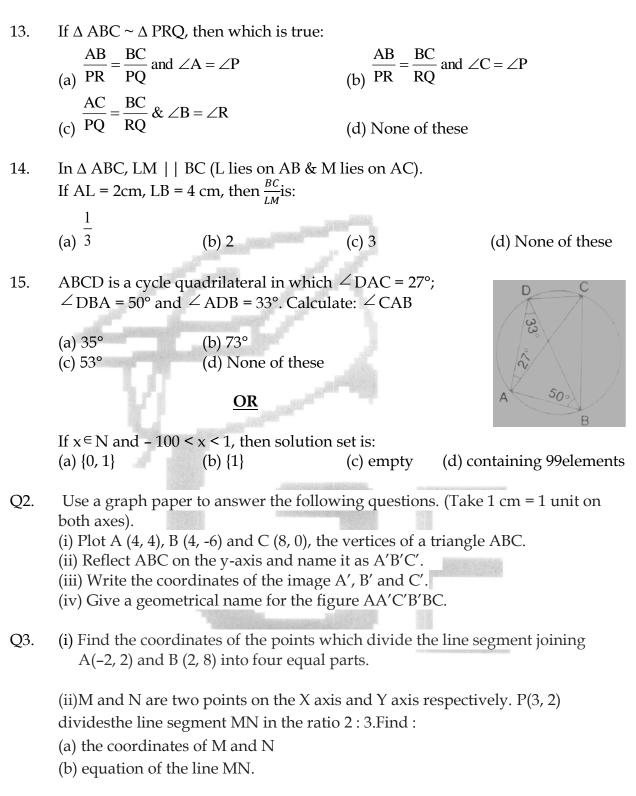
<u>M.M</u>: 80

- Instructions:
 - Q1 is of 15 marks (each question carries 1 mark).Write only the correct option.
 - Q2 carries 5 marks.
 - Q3-Q8 carry 10 marks each [(i)&(ii) carry 3 marks each, (iii) carries 4 marks]
- 1. Point A(a, 6) is reflected in the origin as A'(-2, b). Then a+b equals: (a)2 (b) - 6 (c) 4 (d) - 4
- 2. ABCD is a parallelogram. The co-ordinates of the vertices are A(-4, -2), B(3, 2), C(x, 4) and D(-1, 2). The co-ordinates of the point C are (a) (6,2) (b) (2,6) (c) (- 6,2) (d) None of these
- 3. If in two triangles ABC and PQR, (AB/QR) = (BC/PR) = (CA/PQ), then (a) $\Delta PQR \sim \Delta CAB$ (b) $\Delta PQR \sim \Delta ABC$ (c) $\Delta CBA \sim \Delta PQR$ (d) $\Delta BCA \sim \Delta PQR$
- 4. If in triangles ABC and DEF, (AB/DE)=(BC/FD), then they will be similar when (a) $\angle B = \angle E$ b) $\angle A = \angle D$ c) $\angle B = \angle D$ d) $\angle A = \angle F$
- 5. If 4x + ay 7 = 0 and 6x + 3y 10 = 0 are parallel lines, then a is (a) 1 (b)2 (c) 3 (d) 4 <u>OR</u> Values of k for which the quadratic equation 2x2 - kx + k = 0 has equal roots is (a) 0 only (b) 4 (c) 8 only (d) 0, 8
- D and E are respectively the points on the sides AB and AC of a triangle ABC such that AD = 2 cm, BD = 3 cm, BC = 7.5 cm and DE is parallel to BC. Then, length of DE (in cm) is
 (a) 2.5 (b) 3 (c) 5 (d) 6
- 7. A (5, x), B(-4, 3) and C(y, -2) are the vertices of the \triangle ABC, whose centroid is the origin. Value of 'x y' is: (a) -1 (b) 0 (c) 1 (d) 2

 $\angle ABC - (\angle ADC + \angle OAC)$ (a) 15° (b) 35° (c) 25° (d) 45° D OR If $2\begin{bmatrix}3 & 4\\5 & x\end{bmatrix} + \begin{bmatrix}1 & y\\0 & 1\end{bmatrix} = \begin{bmatrix}7 & 0\\10 & 5\end{bmatrix}$, then 'x + y' is: 110° (c) – 8 (d) 6 (a) – 6 (b) 2 9. The given shows a circle through the points A, B, C and D. If \angle BAC = 67°, then \angle DBC + \angle DCB equals (a) 123° (b) 93° (c) 100° (d) 113° •0 B OR If $A = \begin{bmatrix} 3 & 5 \\ 4 & -2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, then (a) Order of AB is 1×2 (b) Order of AB is 2×2 (c) Order of AB is 2×1 (d) AB is not defined. In the given figure, find TP if AT = 16 cm and AB = 12 cm. 10. (a) 6 cm (b) 12 cm (c) 10 cm (d) 8 cm OR The sum of the first 22 terms of the AP: 8, 3, -2,... is: (a) -979 (b) -1958 (c) 1331 (d) None of these In the given figure, AB and DE are perpendiculars to BC. If AB = 9 cm, DE = 3 cm11. and AC = 24 cm, calculate AD.

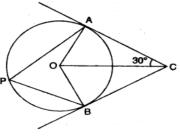
(a) 16 cm (b) 8 cm (c) 6 cm (d) 10 cm




In the adjoining figure; $\angle AOC = 110^\circ$; calculate:

(a) 9.6 cm	(b) 2.4 cm
(c) 4.8 cm	(d) None of these

8.



(iii)In the given figure O is the centre of the circle. Tangents at A and B meet at C. If $\angle AOC = 30^\circ$, find:

- (a) ∠BCO
- (b) ∠AOB

<u>OR</u>

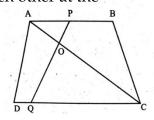
The nth term of a sequence is 8 - 5n. Find 25th term and common difference.

- Q4. (i) The slope of a line joining P(6, k) and Q(1 3k, 3) is 12. Find (a) k (b) Midpoint of PQ, using the value of 'k' found in (a).
 - (ii) The co-ordinates of points A and B are (6, 4) and (8, 12). Find the equation of

(a) the straightline AB.

(c) ∠BEC

(b) the perpendicular bisector of AB.


OR

A box contains 3 blue, 2 white, and 4 red marbles. If a marble is drawn at random from the box, what is the probability that it will be (i) white? (ii) blue? (iii) red?

- (iii) In the given figure, ABCDE is a pentagon inscribed in a circle such that AC is a diameter and side BC | | AE. If ∠BAC = 50°, find giving reasons
 (a) ∠ACB
 (b) ∠EDC
 - OR

How many terms of the series 18 + 15 + 12 +... when added together will give 45?

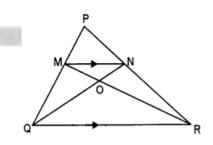
- Q5. (i) If the points A(6, 1), B(8, 2), C(9, 4) and D(p, 3) are the vertices of a parallelogram, taken in order, find the value of p.
 - (ii) In figure below, if AB || DC and AC and PQ intersect each other at the point O, then OA.CQ = OC.AP.

50

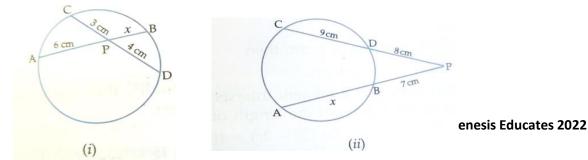
(iii) Rs 480 is divided equally among 'x' children. If the number of children were20 more, then each would have got Rs 12 less. Find the value of x.

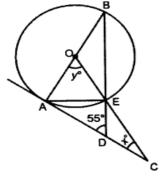
In the given figure, AC is a tangent to the circle with centre O.If \angle ADB = 55°, find x and y. Give reasons for your answers.

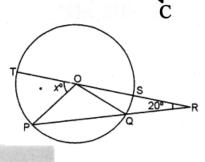
Q6. (i) If A(2, 8), B(6, 4) and C(-6, y) are collinear points, find y.


(ii) In figure below, $\angle A = \angle C$, AB = 6 cm, BP = 15 cm, AP = 12 cm and CP = 4 cm then find PD + CD.

(iii) In the figure given below 'O' is the centre of the circle. If QR = OP and $\angle ORP = 20^\circ$, find the value of 'x' giving reasons.


OR


If $A = \begin{bmatrix} 3 & x \\ 0 & 1 \end{bmatrix} \& B = \begin{bmatrix} 9 & 16 \\ 0 & -y \end{bmatrix}$ and $A^2 = B$, then find 'x + y'.

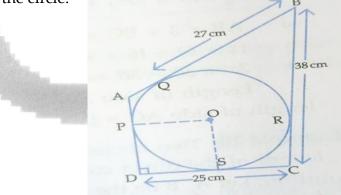

- Q7. (i) Find the coordinates of the point which divides the line segment joining the points (4, 3) and (8, 5) in the ratio 3:1 internally.
 - (ii) In \triangle PQR, MN is parallel to QR and PM/MQ = 2/3
 - (a) Find MN/QR.
 - (b) Prove that $\triangle OMN$ and $\triangle ORQ$ are similar.

(iii) Find the unknown length x in each of the following figures:

Solve: $2y - 3 < y + 1 \le 4y + 7$, if a. $y \in \mathbb{Z}$ b. $y \in \mathbb{R}$

Q8. (i) Find the equation of the perpendicular dropped from the points (-1, 2) onto the line joining (1, 4) and (2, 3).

<u>OR</u>


Solve: $2x^2 - 4x - 3 = 0$ and write your answer correct up to two decimal places.

(ii) ABCD is a rhombus. The co-ordinates of A and C are (2, 12) and (-6, -4) respectively. Find the equation of the diagonal BD.

<u>OR</u>

Solve for x: $\frac{1}{x} + \frac{2}{2x-3} = \frac{1}{x-2}, x \neq 0, \frac{3}{2}, 2$

(iii) In the adjoining figure, a circle is inscribed in the quadrilateral ABCD. Given that BC = 38 cm, QB = 27 cm and DC = 25 cm and that AD is perpendicular to DC, find the radius of the circle.

<u>OR</u>

Using properties of proportion solve for x, given

$$\frac{\sqrt{5x} + \sqrt{2x - 6}}{\sqrt{5x} - \sqrt{2x - 6}} = 4$$

